Energetics Questions VI

1 Which of the following equations has an enthalpy change equal to the negative lattice enthalpy for potassium chloride?

	A C	$\begin{array}{ccc} \mathrm{KCl}_{(\mathrm{s})} \to \mathrm{H} \\ \mathrm{KCl}_{(\mathrm{g})} \to \mathrm{H} \end{array}$	$\chi_{(g)} + \frac{1}{2}\chi_{(g)}^{+} + \chi_{(g)}^{+} + \chi_{(g)}^{+}$	Cl _{2(g)} Cl ⁻ (g)		B D	KCl _(s) KCl _(aq)	$\rightarrow K^{+}_{(g)}$ $\rightarrow K^{+}_{(g)}$	+ $Cl^{-}(g)$ + $Cl^{-}(g)$)		
2	The e	The enthalpy change for the process represented by the equation $Na_{(s)} \rightarrow Na^+_{(g)} + e^-$ is equal to										
	A B C D	the first ionisation energy of sodium the sum of the electron affinity and the enthalpy change of atomisation of sodium the sum of the first ionisation energy and the electron affinity of sodium the sum of the first ionisation energy and the enthalpy change of atomisation of sodium.										
3	Whic	ich one of the reactions listed below represents the electron affinity of chlorine?										
	A C	$\begin{array}{c} \mathrm{Cl}_{(\mathrm{g})} \rightarrow 0 \\ \mathrm{Cl}_{(\mathrm{g})} + \mathbf{e}^{-} \end{array}$	$Cl^{+}_{(g)} + \rightarrow Cl^{-}_{(g)}$	e ⁻ g)		B D	$Cl^{+}_{(g)}$ $\frac{1}{2}Cl_{2(g)}$	$e^{-} \rightarrow e^{-} + e^{-} -$	$ \begin{array}{c} Cl_{(g)} \\ \rightarrow Cl_{(g)} \end{array} $			
4	Whie	hich of the following equations correctly represents the standard enthalpy change of atomisation of oxygen gas?										
	A C	$\begin{array}{c} O_{2(g)} \rightarrow 2O \\ \frac{1}{2}O_{2(g)} \rightarrow 0 \end{array}$	D _(g) O _(g)		B D	$\begin{array}{c} O_{2(g)} \ - \\ O_3 \ ightarrow \end{array}$	$\rightarrow O^{+}_{(g)}$ $3O_{(g)}$	+ O ⁻ (g)				
5	For w	For which one of the following is ΔH° of the reaction numerically equal to the lattice energy of ammonium chloride?							ium			
	A C	$^{1/_{2}}N_{2(g)} + 2$ NH ₄ Cl _(s) \rightarrow	$H_{2(g)} + H_{2(g)} + N^{3-}(g) + N^{3-}$	$\frac{1}{2}Cl_{2(g)} \rightarrow 4H^{+}_{(g)} =$	→ NH ₄ C + Cl ⁻ _(g)	cl _(s)		B D	NH4 ⁺ (g) NH4Cl	$+ Cl^{-}_{(g)}$ $\rightarrow NH$	$ ightarrow NH_4Cl_{(s)}$	
6	Whic	h of the follo	wing cla	sses of re	eaction a	always h	nave an	endother	mic enth	alpy cha	inge?	
		I atomis	ation		II	ionisati	on		III	solution	1	
	А	I only	В	II only		С	III onl	у	D	I and II	only	
7	Which of the following would lead to more exothermic lattice energies?											
		I Higher	· charges	on ions			II	Larger	sizes of	ion		
	А	I only	В	II only		С	Both I	and II	D	Neither	I nor II	
8	Whic	h one of the	following	g has the	most ex	tothermi	c crysta	l lattice	enthalpy	?		
	А	NaF	В	CsI		С	MgF ₂		D	MgCl ₂		
9	The 1	attice energie kJ mol ⁻¹ resp	es (enthat ectively.	lpies) of 1 What is	rubidium fluoride (RbF) and caesium chloride (CsCl) are -760 kJ mol ⁻¹ and the lattice energy of caesium fluoride (CsF) likely to be?						ol ⁻¹ and	
	А	-620 kJ mol	[⁻¹	В	-720 kJ	mol ⁻¹	С	-760 k.	J mol ⁻¹	D	-800 kJ mol ⁻¹	
10	For w greate	which of the f est?	ollowing	; would th	ne differ	rence be	tween tl	ne experi	mental a	and theor	etical lattice energ	ies be
	А	CaO	В	CaS		С	NaF		D	NaCl		
11	Whic	h reaction ha	is the mo	st negativ	ve ∆H v	alue?						
	A C	$\begin{array}{c} \text{LiF}_{(s)} \rightarrow \\ \text{NaCl}_{(s)} \rightarrow \end{array}$	$Li^{+}_{(g)} + Na^{+}_{(g)}$	$F_{(g)}$ + $Cl_{(g)}$		B D	Li ⁺ _(g) - Na ⁺ _(g)	+ $F_{(g)}$ - + $Cl_{(g)}$		cl _(s)		

Energetics Questions VI

Using lithium fluoride as the example, construct a Born-Haber cycle, labelling the cycle with the formulas and state symbols of the species present at each stage.

(b)	Given the following data (all in kJ mol ⁻¹)					
	calculate the lattice enthalpy of lithium					
	fluoride.	[2]				

$\Delta H^{\Theta}_{\text{formation}}$	lithium fluoride	-612
$\Delta H^{e}_{atomisation}$	lithium	+161
$\Delta H^{e}_{atomisation}$	fluorine	+79
1 st ionisation energy	lithium	+519
1 st electron affinity	fluorine	-348

[6]
